High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
نویسندگان
چکیده
Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic network and forecast the network-wide traffic state. We define the high-order traffic graph convolution based on the physical network topology. The proposed framework employs L1-norms on the graph convolution weights and L2-norms on the graph convolution features to identify the most influential links in the traffic network. We propose a novel Real-Time Branching Learning (RTBL) algorithm for the HGC-LSTM framework to accelerate the training process for spatio-temporal data. Experiments show that our HGC-LSTM network is able to capture the complex spatio-temporal dependencies efficiently present in the traffic network and consistently outperforms state-of-the-art baseline methods on two heterogeneous real-world traffic datasets. The visualization of graph convolution weights shows that the proposed framework can accurately recognize the most influential roadway segments in real-world traffic networks.
منابع مشابه
Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges,...
متن کاملSpatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting
The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملSpatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic s...
متن کاملShort-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
Deep learning approaches have reached a celebrity status in artificial intelligence field, its success have mostly relied on Convolutional Networks (CNN) and Recurrent Networks. By exploiting fundamental spatial properties of images and videos, the CNN always achieves dominant performance on visual tasks. And the Recurrent Networks (RNN) especially long short-term memory methods (LSTM) can succ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07007 شماره
صفحات -
تاریخ انتشار 2018